博客
关于我
剑指 Offer 42. 连续子数组的最大和(简单)
阅读量:708 次
发布时间:2019-03-21

本文共 991 字,大约阅读时间需要 3 分钟。

动态规划是一种通过分治的方法将大问题解决为小问题来处理,尤其适用于有重叠子问题和最优子结构的问题。在解决最大子数组问题时,我们可以采用动态规划的方法来找到最优解。

思路:

  • **问题分析:**我们需要找到一个数组中的一个子数组,使得这个子数组的和最大。这个问题适合使用动态规划来解决,因为它涉及到多个子问题(从前一个元素开始的子数组)。

  • 动态规划数组定义:

    • 定义dp数组,其中dp[i]表示从数组的第一个元素到第i个元素(0到i-1)之间最大的子数组和。
  • 转移方程:

    • 对于每个位置i,子数组可以选择以i-1结尾的子数组加上当前元素,或者仅仅是当前元素。因此,转移方程为:[dp[i] = \max(dp[i-1] + nums[i], nums[i])]
  • 维护全局最大值:

    • 在迭代过程中,同时维护一个全局最大值max,用于记录最终的最大子数组和。
  • 时间和空间复杂度:

    • 时间复杂度:O(N),因为我们只需要遍历数组一次。
    • 空间复杂度:O(N),因为需要存储dp数组。
  • 解决代码:

    class Solution {    public int maxSubArray(int[] nums) {        if (nums == null || nums.length == 0) return 0;        int[] dp = new int[nums.length];        dp[0] = nums[0];        int max = dp[0];        for (int i = 1; i < nums.length; i++) {            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);            max = Math.max(max, dp[i]);        }        return max;    }}

    解释:

    • 初始化dp数组,dp[0]设为数组的第一个元素,因为它是初始的最大子数组。
    • 遍历数组,从第二个元素开始计算每个位置i的dp值。dp[i]等于dp[i-1] + nums[i]和nums[i]中的较大值。
    • 同时,在每一步更新全局最大值max,确保在变换过程中能找到最大的子数组和。
    • 处理边界情况,例如数组为空或全为负数的情况,返回期望的结果。

    转载地址:http://ilzrz.baihongyu.com/

    你可能感兴趣的文章
    mysql中null和空字符串的区别与问题!
    查看>>
    MySQL中ON DUPLICATE KEY UPDATE的介绍与使用、批量更新、存在即更新不存在则插入
    查看>>
    MYSQL中TINYINT的取值范围
    查看>>
    MySQL中UPDATE语句的神奇技巧,让你操作数据库如虎添翼!
    查看>>
    Mysql中varchar类型数字排序不对踩坑记录
    查看>>
    MySQL中一条SQL语句到底是如何执行的呢?
    查看>>
    MySQL中你必须知道的10件事,1.5万字!
    查看>>
    MySQL中使用IN()查询到底走不走索引?
    查看>>
    Mysql中使用存储过程插入decimal和时间数据递增的模拟数据
    查看>>
    MySql中关于geometry类型的数据_空的时候如何插入处理_需用null_空字符串插入会报错_Cannot get geometry object from dat---MySql工作笔记003
    查看>>
    mysql中出现Incorrect DECIMAL value: '0' for column '' at row -1错误解决方案
    查看>>
    mysql中出现Unit mysql.service could not be found 的解决方法
    查看>>
    mysql中出现update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在 dpkg: 处理软件包 mysql-server-8.0的解决方法(全)
    查看>>
    Mysql中各类锁的机制图文详细解析(全)
    查看>>